
Order Statistics

1 Introduction and Notation

Let X1, X2, . . . , X10 be a random sample of size 15 from the uniform distribution over the interval
(0, 1). Here are three different realizations realization of such samples.

Because these samples come from a uniform distribution, we expect them to be spread out “ran-
domly” and “evenly” across the interval (0, 1). (You might think that you are seeing some sort of
clustering but keep in mind that you are looking at a measly selection of only three samples. After
collecting more samples I’m sure your view would change!)

Consider the single smallest value from each of these three samples, highlighted here.

Collect the minimums onto a single graph.



Not surprisingly, they are down towards zero! It would be pretty difficult to get a sample of 15
uniforms on (0, 1) that has a minimum up by the right endpoint of 1. In fact, we will show that if
we kept collecting minimums of samples of size 15, they would have a probability density function
that looks like this.

Notation: Let X1, X2, . . . , Xn be a random sample of size n from some distribution. We denote
the order statistics by

X(1) = min(X1, X2, . . . , Xn)

X(2) = the 2nd smallest of X1, X2, . . . , Xn
... =

...
X(n) = max(X1, X2, . . . , Xn)

(Another commonly used notation is X1:n, X2:n, . . . , Xn:n for the min through the max, respec-
tively.)

In what follows, we will derive the distributions and joint distributions for each of these statistics
and groups of these statistics. We will consider continuous random variables only. Imagine
taking a random sample of size 15 from the geometric distribution with some fixed parameter p.
The chances are very high that you will have some repeated values and not see 15 distinct values.
For example, suppose we observe 7 distinct values. While it would make sense to talk about the
minimum or maximum value here, it would not make sense to talk about the 12th largest value in
this case. To further confuse the matter, the next sample might have a different number of distinct
values! Any analysis of the order statistics for this discrete distribution would have to be well-
defined in what would likely be an ad hoc way. (For example, one might define them conditional
on the number of distinct values observed.)

2 The Distribution of the Minimum

Suppose that X1, X2, . . . , Xn is a random sample from a continuous distribution with pdf f and
cdf F . We will now derive the pdf for X(1), the minimum value of the sample. For order statistics,
it is usually easier to begin by considering the cdf. The game plan will be to relate the cdf of the
minimum to the behavior of the individual sampled values X1, X2, . . . , Xn for which we know the
pdf and cdf.



The cdf for the minimum is
FX(1)

(x) = P (X(1) ≤ x).

Imagine a random sample falling in such a way that the minimum is below a fixed value x. It might
look like this

or this

or this

or even this.

In other words,

FX(1)
(x) = P (X(1) ≤ x) = P ( at least one of X1, X2, . . . , Xn is ≤ x).

There are many ways for the individual Xi to fall so that the minimum is less than or equal to x.
Considering all of the possibilities is a lot of work! On the other hand, the minimum is greater
than x if and only if all the Xi are greater than x. So, it is easy to relate the probability P (X(1) > x)
back to the individual Xi. Thus, we consider

FX(1)
(x) = P (X(1) ≤ x) = 1− P (X(1) > x)

= 1− P (X1 > x,X2 > x, . . . ,Xn > x )

= P (X1 > x)P (X2 > x) · · ·P (Xn > x) by independence

= 1− [P (X1 > x)]n because the Xi are identically distributed

= 1− [1− F (x)]n



So, we have that the pdf for the minimum is

fX(1)
(x) = d

dxFX(1)
(x) = d

dx {1− [1− F (x)]n}

= n[1− F (x)]n−1f(x)

Going back to the uniform example of Section 1, we had f(x) = I(0,1)(x) and

F (x) =


0 , x < 0
x , 0 ≤ x < 1
1 , x ≥ 1.

The pdf for the minimum in this case is

fX(1)
(x) = n[1− x]n−1I(0,∞)(x).

This is the pdf for the Beta distribution with parameters 1 and n. Thus, we can write

X(1) ∼ Beta(1, n).

3 The Distribution of the Maximum

Again consider our random sample X1, X2, . . . , Xn from a continuous distribution with pdf f and
cdf F . We will now derive the pdf for X(n), the maximum value of the sample. As with the
minimum, we will consider the cdf and try to relate it to the behavior of the individual sampled
values X1, X2, . . . , Xn.

The cdf for the minimum is
FX(1)

(x) = P (X(1) ≤ x).

Imagine a random sample falling in such a way that the maximum is below a fixed value x. This
will happen if and only if all of the Xi are below x.

Thus, we have

FX(n)
(x) = P (X(n) ≤ x)

= P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x )

= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x) by independence

= [P (X1 ≤ x)]n because the Xi are identically distributed

= [F (x)]n.



Take the derivative, we get the pdf for the maximum to be

fX(n)
(x) = d

dxFX(1)
(x) = d

dx [F (x)]n

= n[F (x)]n−1f(x)

In the case of the random sample of size 15 from the uniform distribution on (0, 1), the pdf is

fX(n)(x) = nxn−1 I(0,1)(x)

which is the pdf of the Beta(n, 1) distribution.

Not surprisingly, all most of the probability or “mass” for the maximum is piled up near the right
endpoint of 1.

4 The Joint Distribution of the Minimum and Maximum

Let’s go for the joint cdf of the minimum and the maximum

FX(1),X(n)
(x, y) = P (X(1) ≤ x,X(n) ≤ y).

It is not clear how to write this in terms of the individual Xi. Consider instead the relationship

P (X(n) ≤ y) = P (X(1) ≤ x,X(n) ≤ y) + P (X(1) > x,X(n) ≤ y). (1)

We know how to write out the term on the left-hand side. The first term on the right-hand side is
what we want to compute. As for the final term,

P (X(1) > x,X(n) ≤ y),

note that this is zero if x ≥ y. (In this case, P (X(1) ≤ x,X(n) ≤ y) = P (X(n) ≤ y) and (1) gives
us only P (X(n) ≤ y) = P (X(n) ≤ y) which is both true and uninteresting! So, we consider the case
that x < y. Note then that

P (X(1) > x,X(n) ≤ y) = P (x < X1 ≤ y, x < X2 ≤ y, . . . , x < Xn ≤ y)

iid
= [P (x < X1 ≤ y)]n

= [F (y)− F (x)]n.



Thus, from (1), we have that

FX(1),X(n)
(x, y) = P (X(1) ≤ x,X(n) ≤ y)

= P (X(n) ≤ y)− P (X(1) > x,X(n) ≤ y)

= [F (y)]n − [F (y)− F (x)]n.

Now the joint pdf is

fX(1),X(n)
(x, y) = d

dx
d
dy {[F (y)]n − [F (y)− F (x)]n}

= d
dx

{
n[F (y)]n−1f(y)− n[F (y)− F (x)]n−1f(y)

}
= n(n− 1)[F (y)− F (x)]n−2f(x)f(y).

This hold for x < y and for x and y both in the support of the original distribution.

For the sample of size 15 from the uniform distribution on (0, 1), the joint pdf for the min and max
is

fX(1),X(n)
(x, y) = 15 · 14 · [y − x]13 I(0,y)(x) I(0,1)(y).

A Heuristic:

Since X1, X2, . . . , Xn are assumed to come from a continuous distribution, the min and max are
also continuous and the joint pdf does not represent probability– it is a surface under
which volume represents probability. However, if we bend the rules and think of the joint pdf as
probability, we can develop a heuristic method for remembering it.

Suppose (though it is not true) that

fX(1),X(n)
(x, y) = P (X(1) = x,X(n) = y).

This would mean that we need one value in the sample X1, X2, . . . , Xn to fall at x, one value to
fall at y, and the remaining n− 2 values to fall in between.

The “probability” one of the Xi is x is “like” f(x). (Remember, we are bending the rules here
in order to develop a heuristic. This probability is, of course, actually 0 for a continuous random
variable.)

The “probability” one of the Xi is y is “like” f(y).

The probability that one of the Xi is in between x and y is (actually) F (y)− F (x).

The sample can fall many ways to give us a minimum at x and a maximum at y. For example,
imagine that n = 5. We might get X3 = x, X1 = y and the remaining X2, X4, X5 in between x and
y.

This would happen with “probability”

f(x)[F (y)− F (x)]3f(y).



Another possibility is that we get X5 = x and X2 = y and the remaining X1, X3, X4 in between x
and y.

This would also happen with “probability”

f(x)[F (y)− F (x)]3f(y).

We have to add this “probability” up as many times as there are scenarios. So, let’s count them.
There are 5! different ways to lay down the Xi. For each one, there are 3! different ways to lay
down the remaining values in between that will result in the same min and max. So, we need to
divide these redundancies out for a total of 5!/3! = (5)(4) ways to get that min at x and max at y.

In general, for a sample of size n, there are n! different ways to lay down the Xi. For each one,
there are (n − 2)! different ways that result in the same min and max. So, there are a total of
n!/(n− 2)! = n(n− 1) ways to get that

Thus, the “probability” of getting a minimum of x and a maximum of y is

n(n− 1)f(x)[F (y)− F (x)]n−2f(y),

which looks an awful lot like the formula we derived above!

5 The Joint Distribution for All of the Order Statistics

We wish now to find the pdf
fX(1),X(2),...,X(n)

(x1, x2, . . . , xn).

This time, we will start with the heuristic aid.

Suppose that n = 3 and we want to find

fX(1),X(2),X(3)
(x1, x2, x3) “=” P (X(1) = x1, X(2) = x2, X(3) = x3).

The first thing to notice is that this probability will be 0 if we don’t have x1 < x2 < x3. (Note that
we need strict inequalities here. For a continuous distribution, we will never see repeated values so
the minimum and second smallest, for example, could not take on the same value.)

Fix values x1 < x2 < x3. How could a sample of size 3 fall so that the minimum is x1, the next
smallest is x2, and the largest is x3? We could observe

X1 = x1, X2 = x2, X3 = x3,

or
X1 = x2, X2 = x1, X3 = x3,

or
X2 = x2, X2 = x3, X3 = x1,

or...

There are 3! possibilities to list. The “probability” for each is f(x1)f(x2)f(x3). Thus,

fX(1),X(2),X(3)
(x1, x2, x3) “=” P (X(1) = x1, X(2) = x2, X(3) = x3) = 3!f(x1)f(x2)f(x3).



For general n, we have

fX(1),X(2),...,X(n)
(x1, x2, . . . , xn) “=” P (X(1) = x1, X(2) = x2, . . . X(n) = xn)

= n!f(x1)f(x2) · · · f(xn)

which holds for x1 < x2 < · · · < xn with all xi in the support for the original distribution. The
joint pdf is zero otherwise.

The Formalities:

The joint cdf,
P (X(1) ≤ x1, X(2) ≤ x2, . . . , X(n) ≤ xn),

is a little hard to work with. Instead, we consider something similar:

P (y1 < X(1) ≤ x1, y2 < X(2) ≤ x2, . . . , yn < X(n) < xn)

for values y1 < x1 ≤ y2 < x2 ≤ y3 < x3 ≤ · · · ≤ yn < xn.

This can happen if
y1 < X1 ≤ x1, y2 < X2 ≤ x2, . . . , yn < Xn < xn,

or if
y1 < X5 ≤ x1, y2 < X3 ≤ x2, . . . , yn < Xn−2 < xn,

or...

Because of the constraints on the xi and yi, these are disjoint events. So, we can add these n!
probabilities, which will all be the same, together to get

P (y1 < X(1) ≤ x1, . . . , yn < X(n) < xn) = n!P (y1 < X1 ≤ x1, . . . , yn < Xn < xn).

Note that

P (y1 < X1 ≤ x1, . . . , yn < Xn < xn)
indep
=

n∏
i=1

P (yi < Xi ≤ xi) =
n∏

i=1

[F (xi)− F (yi)].

So,

P (y1 < X(1) ≤ x1, . . . , yn < X(n) < xn) = n!
n∏

i=1

[F (xi)− F (yi)] (2)

The left-hand side is∫ xn

yn

∫ xn−1

yn−1

· · ·
∫ x1

y1
fX(1),X(2),...,X(n)

(u1, u2, . . . , un) du1du2 . . . , dun.

Taking derivatives d
dx1

d
dx2
· · · d

dxn
gives

fX(1),X(2),...,X(n)
(x1, x2, . . . , xn)

Differentiating both sides of (2) with respect to x1, x2, . . . , xn gives us

fX(1),X(2),...,X(n)
(x1, x2, . . . , xn) = n!f(x1)f(x2) · · · f(xn)

which holds for x1 < x2 < · · · , xn and all xi in the support of the original distribution. The pdf is
zero otherwise.



6 The Distribution of X(i)

We can get the marginal pdf for the ith order statistic X(i), by taking the joint pdf for all order
statistics from Section 5 and integrating out the unwanted xj .

Let’s start by integrating out x1. Since the support of the joint pdf for the order statistics includes
the constraint x1 < x2 < · · · < xn, limits of integration are −∞ to x2.

fX(2),...,X(n)
(x2, . . . , xn) =

∫ x2
−∞ fX(1),X(2),...,X(n)

(x1, x2, . . . , xn) dx1

=
∫ x2
−∞ n!f(x1)f(x2) · · · f(xn) dx1

= n!f(x2) · · · f(xn)
∫ x2
−∞ f(x1) dx1

= n!f(x2) · · · f(xn)F (x2)

for x2 < x3 < · · · < xn.

Now let’s integrate out x2 which goes from −∞ to x3.

fX(3),...,X(n)
(x3, . . . , xn) =

∫ x3
−∞ fX(2),...,X(n)

(x2, . . . , xn) dx2

= n!f(x3) · · · f(xn)
∫ x3
−∞ F (x2)︸ ︷︷ ︸

u

f(x2) dx2︸ ︷︷ ︸
du

= n!f(x3) · · · f(xn) 1
2 [F (x2)]

2
∣∣∣x2=x3

x2=−∞

= n!f(x3) · · · f(xn)12([F (x3)]
2 − [F (−∞)︸ ︷︷ ︸

0

]2)

= n!
2 f(x3) · · · f(xn)[F (x3)]

2

which holds for x3 < x4 < · · · < xn.

The next time through, we will integrate out x3 from −∞ to x4. Using u = F (x3) and du =
f(x3) dx3, we get

fX(4),...,X(n)
(x4, . . . , xn) =

n!

(3)(2)
f(x4) · · · f(xn)[F (x4)]

3.

Continue until we reach X(i):

fX(i),...,X(n)
(xi, . . . , xn) =

n!

(i− 1)!
f(xi) · · · f(xn)[F (xi)]

i−1

which holds for xi < xi+1 < · · · < xn.

Now, we start integrating off x’s from the other side.

fX(i),...,X(n−1)
(xi, . . . , xn−1) =

∫∞
xn−1

fX(i),...,X(n−1)
(xi, . . . , xn) dxn

= n!
(i−1)!f(xi) · · · f(xn−1)[F (xi)]

i−1 ∫∞
xn−1

f(xn) dxn

= n!
(i−1)!f(xi) · · · f(xn−1)[F (xi)]

i−1[1− F (xn−1)]



for xi < xi+1 < · · · , xn−1.

fX(i),...,X(n−2)
(xi, . . . , xn−2) =

∫∞
xn−2

fX(i),...,X(n−1)
(xi, . . . , xn−1) dxn−1

= n!
(i−1)!f(xi) · · · f(xn−2)[F (xi)]

i−1 ∫∞
xn−2

f(xn−1)[1− F (xn−1)] dxn−1

Letting u = 1− F (xn−1) and du = −f(xn−1) dxn−1, we get

fX(i),...,X(n−2)
(xi, . . . , xn−2) = n!

(i−1)!f(xi) · · · f(xn−2)[F (xi)]
i−1

{
−1

2 [1− F (xn−1)]
2
}xn−1=∞

xn−1=xn−2

= n!
2(i−1)!f(xi) · · · f(xn−2)[F (xi)]

i−1[1− F (xn−2)]
2

for xi < xi+1, · · · < xn−2.

The next time through we will integrate out xn−2 from xn−3 to ∞. Note that∫∞
xn−3

f(xn−2)[1− F (xn−2)︸ ︷︷ ︸
u

]2 dxn−2 = −1
3 [1− F (xn−2)]

3
∣∣∣xn−2=∞

xn−2=xn−3

= 1
3 [1− F (xn−3)]

3.

Thus,

fX(i),...,X(n−3)
(xi, . . . , xn−3) =

n!

(3)(2)(i− 1)!
f(xi) · · · f(xn−3)[F (xi)]

i−1[1− F (xn−3)]
3

for xi < xi+1 < · · · < xn−3.

Continuing all the way down to the marginal pdf for X(i) alone, we get

fX(i)
= n!

(n−i)!(i−1)! [F (xi)]
i−1f(xi)[1− F (xn−3)]

n−i

for −∞ < xi <∞. (← This may be further restricted by indicators in f(xi).)

The Heuristic:

We once again will think of the continuous random variables X1, X2, . . . , Xn as discrete and fX(i)
(xi)

as the “probability” that the ith order statistic is at xi. First not that there are n! different ways to
arrange the x′s. We need to put 1 at xi, which will happen with “probability” f(xi). We need to
put i−1 below xi, which will happen with probability [F (xi)]

i−1 and we need to put n− i above xi,
which will happen with probability [1− F (xi)]

n−i. There are (i− 1)! different ways to arrange the
x’s chosen to go below xi. These arrangements are redundant and need to be divided out. Hence,
we have (i− 1)! in the denominator. There are (n− i)! different ways to arrange the x’s chosen to
go above xi. These arrangements are also redundant and need to be divided out. Thus, we also
have (n− i)! in the denominator.



7 The Joint Distribution of X(i) and X(j) for i < j

As in Section 6, one could start with the joint pdf for all of the order statistics and integrate out
the unwanted ones. The result will be

fX(i),X(j)
(xi, xj) =

n!

(i− 1)!(j − i− 1)!(n− j)!
[F (xi)]

i−1f(xi)[F (xj)−F (xi)]
j−i−1f(xj)[1−F (xj)]

n−j

for −∞ < xi < xj <∞.

Can you convince yourself of this heuristically?


